Drone-Based Detection and Classification of Greater Caribbean Manatees in the Panama Canal Basin Artículo académico uri icon

Abstracto

  • This study introduces a novel, drone-based approach for the detection and classification of Greater Caribbean Manatees (Trichechus manatus manatus) in the Panama Canal Basin by integrating advanced deep learning techniques. Leveraging the high-performance YOLOv8 model augmented with Sliced Aided Hyper Inferencing (SAHI) for improved small-object detection, our system accurately identifies individual manatees, mother–calf pairs, and group formations across a challenging aquatic environment. Additionally, the use of AltCLIP for zero-shot classification enables robust demographic analysis without extensive labeled data, enhancing model adaptability in data-scarce scenarios. For this study, more than 57,000 UAV images were acquired from multiple drone flights covering diverse regions of Gatun Lake and its surroundings. In cross-validation experiments, the detection model achieved precision levels as high as 93% and mean average precision (mAP) values exceeding 90% under ideal conditions. However, testing on unseen data revealed a lower recall, highlighting challenges in detecting manatees under variable altitudes and adverse lighting conditions. Furthermore, the integrated zero-shot classification approach demonstrated a robust top-2 accuracy close to 90%, effectively categorizing manatee demographic groupings despite overlapping visual features. This work presents a deep learning framework integrated with UAV technology, offering a scalable, non-invasive solution for real-time wildlife monitoring. By enabling precise detection and classification, it lays the foundation for enhanced habitat assessments and more effective conservation planning in similar tropical wetland ecosystems.

fecha de publicación

  • 2025

Publicado en

Página inicial

  • 230

Volumen

  • 9

Cuestión

  • 4