Abstracto
-
AUTHORS
Angel Martín del Rey
BACKGROUND
An advanced persistent threat (APT) can be defined as a targeted and very sophisticated cyber attack. IT administrators need tools that allow for the early detection of these attacks. Several approaches have been proposed to provide solutions to this problem based on the attack life cycle. Recently, machine learning techniques have been implemented in these approaches to improve the problem of detection. This paper aims to propose a new approach to APT detection, using machine learning techniques, and is based on the life cycle of an APT attack. The proposed model is organised into two passive stages and three active stages to adapt the mitigation techniques based on machine learning.